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Algorithms and Probability

- Karp, R. M. (1977), Probabilistic Analysis of
Partitioning Algorithms for the Traveling Salesman
Problem. Math. Oper. Res.

Asymptotically
optimal heuristics

FIGURE 4. Tour Obtained Using the Loop and Pass Operations.



Algorithms and Probability

- Haimovich, M. and A. H. G. Rinnooy Kan (1985),
Bounds and Heuristics for Capacitated Routing
Problems. Math. Oper. Res.

+ Key Assumption: Equal Customer Demand

« The Challenge: Identify asymptotically optimal
algorithms for general vehicle routing problems
+ Unequal customer demand
+ Time window constraints



General Vehicle Routing Problems

- Bramel and Simchi-Levi (1996), Probabilistic Analysis and
Practical Algorithms for the Vehicle Routing Problem with
Time Windows. Operations Research

« Cost is dominated by redial distance and optimal packing of
customers.

The area where the
customers are localed

« Leads to modeling routing
problems as “Capacitated
Location Problems.”

« Asymptotically optimal
heuristic

Figure 1. Tour used to construct heuristic.



Weaknesses and Strengths

« Two very strong assumptions
+ Large size problems
+ Independent customer behavior

« Provides insight into the structure of efficient
algorithms:
+ Cost and Service
+ Computational time



NYC--School Bus Routing System

« 1500 buses
# * $100K per bus and driver per year
-4 * The “Manhattan Project”

30-40% savings

Computerized System for School
Bus Routing

« Combine Large Database,
Visualization and Analytics

» First Place Prize in Windows

World Open Competition, 1994
10



LogicTools, Inc. — Corporate Overview

® |ndustry Leading Company

= Founded in 1996 by David Simchi-Levi, professor at MIT and
Edith Simchi-Levi

nnnnnnnnnnnnnnn

= The market leader in supply chain planning systems that integrate =
state-of-the-art optimization technology and easy-to-use
interfaces (%,

= HQ in Chicago, IL v Ny
Offices: Boston MA, Eugene OR and Munich Germany '
= Over 350 companies (70+ Fortune 500) in many different =

industries use and benefit from our solutions POWERED BY
SAP NetWeaver
: . : oS
= LogicTools is an SAP Software Partner since 2004 N
= SAP recognizes LogicTools’ thought leadership in supply chain i
planning LoacTOOLs |

= Peak Performance Initiative with Microsoft e ey A

= Acquired in April 2007
= Now part of IBM Business Analytics Solutions

= LogicTools technology is “used by over 50% of the world’s largest
supply chains,” according to IBM.

]
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The Pepsi Bottling Company (A Division of PepsiCo)

Make

Operates 57
Plants in the U.S.
and 103 Plants
Worldwide

The Challenge (Beginning of 2006):

Sell

7 Business units
in the U.S. each

responsible for

local demand

« Shifting consumer preference
*From carbonated to non-carbonated drinks
*From cans to bottles

* Produced these products in limited plants

» Service problems during periods of peak demand

Deliver

240,000 Miles are
Logged Every Day to
Meet the Needs of
Our Customers

Service

Strong Customer
Service Culture

13



Process Flexibility

. Balance transportation and manufacturing costs
. Match supply with demand
. Better utilize resources

. o Full Flexibility
No Flexibility 2 Flexibility
A
B :
B—c M c C

Plant Product Plant Product Plant Product



Chaining Strategy (Jordan & Graves 1995)

. Focus: maximize the amount of demand satisfied
« Simulation study

Full Flexibility

Short chains Long chain

F

WL
i

Plant Product Plant Product

Applications to different settings:

Sheikhzadeh et al. 1998], [Graves & Tomlin 2003], [Hopp et al. 2004],
‘Gurumurthi & Benjaafar 2004], [Bish et al. 2005], [Iravani et al. 2005],
Wallace & Whitt 2005], [Chou et al. 20104a] 15




PepsiCo’s Press Release, 2008—The Impact

Creation of regular meetings bringing together Supply chain,
Transport, Finance, Sales and Manufacturing functions to discuss
sourcing and pre-build strategies

Reduction in raw material and supplies inventory from $201 to $195
million

A 2 percentage point decline in in growth of transport miles even as
revenue grew

An additional 12.3 million cases available to be sold due to
reduction in warehouse out-of-stock levels

To put the last result in perspective, the reduction in warehouse out-of-stock levels
effectively added one and a half production lines worth of capacity to the firm’s
supply chain without any capital expenditure.

16



Motivating Example

No Flexibility
Plant Product
1
Fixed plant capacity: 10000 ER
L2} :
[ID Normal product demand:
mean = 10000 Bl ;
stdev = 3300
Elg :
I :
o] 6

Expected Sales~ 52034



Adding Flexibilities

Full Flexibility Long Chain Short Chains
Plant Product Plant Product Plant Product

1 1

2 2 :
; Il ;
~ >
4 4
5 5
6 6
Expected Sales = 56757 Expected Sales = 56735 Expected Sales ~ 54374

Improvement = 9.08% Improvement = 9.03% Improvement = 4.50%



Increasing Incremental Benefit

Plant Product

1

Expected Marginal
Design Sales Benefit

No Flexibility 52034
Add Arc (1,2)
Add Arc (2,3)

Add Arc (3,4)
4 Add Arc (4,5)
Add Arc (5,6)
5 Add Arc (6,1)

w




Increasing Incremental Benefit

Plant Product
1
-\ Expected Marginal
2 L 2 Design Sales Benefit
No Flexibility 52034
Add Arc (1,2) 52424 390
N ’ Add Arc (2,3)
Add Arc (3,4)
K : Add Arc (4,5)
Add Arc (5,6)
[ 5] 5 Add Arc (6,1)
[ 6 | 6




Increasing Incremental Benefit

Plant Product
1
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Increasing Incremental Benefit

Plant Product
1
-\ Expected Marginal
2 Design Sales Benefit
-\ No Flexibility 52034
Add Arc (1,2) 52424 390
K ’ Add Arc (2,3) 52982 558
Add Arc (3,4) 53647 665
Kl : Add Arc (4,5) 54378 731
Add Arc (5,6)
[ 5] 5 Add Arc (6,1)
(6 | 6




Increasing Incremental Benefit

Plant Product
1
-\ Expected Marginal
2 Design Sales Benefit
-\ No Flexibility 52034
Add Arc (1,2) 52424 390
K ’ Add Arc (2,3) 52982 558
Add Arc (3,4) 53647 665
Kl : Add Arc (4,5) 54378 731
Add Arc (5,6) 55163 785
-\ 5 Add Arc (6,1)
(6 | 6




Increasing Incremental Benefit

Plant Product
1
Expected Marginal
2 Design Sales Benefit
No Flexibility 52034
-\L Add Arc (1,2) 52424 390
K ’ Add Arc (2,3) 52982 558
X Add Arc (3,4) 53647 665
Kl : Add Arc (4,5) 54378 731
7\ Add Arc (5,6) 55163 785
5 Add Arc (6,1) 56735 1572
:7\ 6

Observed by papers such as [Hopp et al. 2004] & [Graves 2008]



Flexibility Structures

Long Chain Full Flexibility Open Chain

o F, ]

* Assumptions : # plants =# products; plant capacity is 1

* Notations: For a demand realization d, we use P(d, A) to denote
the sales of flexibility structure A



Supermodularity

Theorem 1 (Supermodularity of Long Chain)

Given a fixed demand instance d, for any a and y that are
flexible arcs in C, and any flexibility structure A c C,,

P(d, Au{a, v}) - P(d, Au{y}) = P(d, A U{a}) - P(d, A).

— flexible arcs




Supermodularity

Theorem 1 (Supermodularity of Long Chain)

Given a fixed demand instance d, for any a and y that are
flexible arcs in C, and any flexibility structure A c C,,

P(d, Au{a, v}) - P(d, Au{y}) = P(d, A U{a}) - P(d, A).

P(d, A U{a}) - P(d, A)

increase in sales when we add o to A.

P(d, AU{a, 7}) - P(d, AU{7}):
increase in sales when we add o to AU{y}.



Supermodularity

Theorem 1 (Supermodularity of Long Chain)

Given a fixed demand instance d, for any a and y that are
flexible arcs in C, and any flexibility structure A c C,,

P(d, Au{a, v}) - P(d, Au{y}) = P(d, A U{a}) - P(d, A).

Application of [Gale and Politof 1981].

Corollary 1 (Increasing in Marginal Benefits)

The marginal benefits as the long chain is constructed is
always increasing.

Observed by papers such as [Hopp et al. 2004] & [Graves 2008]



Decompose the Sales of the Long Chain

Theorem 2 (Decomposition of Long Chain)
Given a demand instance d,

P(d,C >‘Z(‘°<d o (o) = P(d,C, = {041, Bi)

where o, =(i, 1+1) fori=1,...,n-1, ay= a,=(n,1) and B;=(i,i) for
i=1,...,n

Example (n=4, i=1): P(d, C, — {1 }) P(d, C, — {o, g, B1})

[ 1] 1




[llustrating the Decomposition

) — P

k) _ P(d) C3

(5, 2o, B1})

1

{a2' aq, 182})

3, A2, 183})'




Key Idea of the Proof




Under IID Demand

Under IID demand,

3X(

)

o | =
I
o -

3

E[P(H! Lg)] E[P(D L,)]

E[P(D, C3)] !
Proposition 1 (Expected Pt‘form ce of Long ain)

For IID demand, E[P(D, C ,L)-P(D,L_,)]




Impact

Corollary 2 (Risk Pooling of Long Chain)
E[P(D, C,)]/n is increasing with n.

Corollary 3 (Optimality of Long Chain)
The expected sales of the long chain is greater than or

equal to that of the any 2-flexibility structures.

Corollary 4 (Exponential Convergence of the Fill Rate)
E[P(D, C,)]/n converges exponentially quickly with n.

A collection of several disjoint large chains can work just as well
as the long chain.



Impact (Cont.)

Corollary 5 (Effectiveness of Long Chain)
For any integer n=2,

E[P(D,Fn)]  E[P(D, Cpn)] < E[P(D,Fn+1)]  E[P(D,Cn+1)]
n n _ n+1 n+1

where u = lim EP® S0l
k—o00 k

<1-—u,

E.g when D, = N(1,0.33), lim 010,96, [Chou et al 2010,
E[P(D, Fy)] _ E[P(D, Cn)] E[P(D, C)]
- n <0.04 and E[PD, Fu)] >(0.9568.

Supply chain resiliency with process flexibility and inventory:

= Implementation at Ford —-Recently Awarded the INFORMS
Daniel H. Wagner Prize for Excellence in Operations Research
Practice
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Data Driven Research--The Opportunity

- Extensive use of data to identify models that drive
decisions and actions
+ Spans Statistics, Computational Science and Operations
Research techniques

The Queue Inference Engine: Deducing Queue Statistics from Transactional
Data. Richard C. Larson Management Science, (1990) Vol. 36, pp. 586-601
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Online Retailing: Online Fashion
Sample Sales Industr

 Offers extremely limited-time discounts (“flash sales™) on
designer apparel & accessories

« Emerged in mid-2000s and has had nearly 50% annual
growth in last 5 years

Ralde @

BEYONDTHERACK

B\,

GlLl  zulily

N

H .
I I I Il  Massachusetts Institute of Technology Page 38



Snapshot of Rue La La’s Website

F—-ﬂ

From the Reserve: Watches by Check Off His List: Gift Ideas
Rolex & Cartier » Under $100 »
GLOSING IN 2 DAYS, 19:47:42 GLOSING IN 2 DAYS, 19:47:42 CLOSING IN 2 DAYS, 19:47:42

VINTAGE + LUXURIES

Saucony Women » Furs by Christian Dior & More: Saucony Men »
Picks by WGACA »
CLOSING IN 1 DAY, 19:47:42 GLOSING IN 1 DAY, 19:47:42 CLOSING IN 1 DAY, 19:47:42




N - y’x;.-*\
D_~Ceccen
NN A

Saucony "Triumph 10" Running Saucony "Progrid Guide 6" Running Saucony "Triumph 10" Running
Shoe Shoe Shoe
s12000 $79.90 s11000 $65.90 $12000 $79.90

H .
I I I I I Massachusetts Institute of Technology Page 40



“SKU”

Saucony "Progrid

Guide 6" Running
Shoe

11000 $65.90
Size
5.5 6 6.5 7D 8.5 |z|
9.5([10]| 10.5 11
Quantity
1 v
DD TGO BAG Sign up for Quick! Buy It.

Never miss out on something you love.

H .
I I I I I Massachusetts Institute of Technology Page 41



Flash Sales Operations

Merchants

purchase items
from designers _l

Designers
ship items to
Warehou;-e"/ T
Merchants decide

when to sell items
(create “event”)

First event that style is
sold = “1st exposure”

During event,
customers
purchase items

Yes

S

*Sometimes designer will hold inventory




Sell-Through Distribution
of New Products

suggests price
may be too low

70%

60%
suggests price /

50% + .
» may be too hlgh M Department 1
c|EJ 40% \\ M Department 2
)
= " Department 3
\3 30% - M Department 4
°© \ M Department 5

20%

10fo0 -

0%-25% 25%-50% 50%-75%  75%-100% \ SOLD OUT
100%)

% Inventory Sold (Sell-Through)

Page 43
*Data disguised to protect confidentiality



Approach

Goal: Maximize expected revenue from 15t exposure styles

’ i N\
Demand Forecasting

Challenges:
= Predicting demand for
items that have never

Price Optimization

Challenges:

been sold before
= Estimating lost sales

Techniques:

= Clustering

= Machine learning models
for regression

Structure of demand forecast
Demand of each style is
dependent on price of
competing styles -
exponential # variables

Techniques:

Novel reformulation of price
optimization problem
Creation of efficient algorithm
to solve daily

Page 44




Forecasting Model:
Explanatory Variables Included

=TT T Y

:-----.b

7
/ / \ N
I Products | Combination I Events I
I-Deparnnent I-Pﬁce I * Year I
I + Class I * % Discount = (1 — Price / MSRP) I * Month |
! » Color Popularity ! * # Concurrent Events in Department ! * Week Day / Time I
I + Size Popularity I + # Styles Sold in Same Subclass and I * Event Type I
I - Brand Type A/B I Event (i.e. # Competing Styles) I - Event Length l
I - Brand Popularity I * Relative Price of Competing Styles I |
I l * # Branded Events in Previous 12 Months I
\ \ ! /

» Tested several machine learning techniques

— Regression trees performed best

Page 45



Regression Tree — lllustration

If condition is true, move left;

Price <100 otherwise, move right

Relative Price of
Competing Styles < 0.8
30
Demand

prediction @

I I I I I Massachusetts Institute of Technology Pag e 46



Approach

Goal: Maximize expected revenue from 15t exposure styles

Demand Forecasting

Challenges: Challenges:

* Predicting demand for =  Structure of demand forecast
items that have never = Demand of each style is
been sold before dependent on price of

= Estimating lost sales competing styles -

exponential # variables

Techniques: Techniques:

= Clustering = Novel reformulation of price

= Machine learning models optimization problem
for regression = Creation of efficient algorithm

to solve daily

Page 47



Price Optimization Complexity

* Three features used to predict demand are associated with pricing

— Price
_ 1 — Price
— % Discount =
MSRP
— Relative Price of Competing Styles =
Price

< Avg. Price of Competing Styles ——>

* Pricing must be optimized concurrently for all competing styles
— Would be impractical to calculate revenue for all potential
combinations of prices
* We developed an efficient algorithm to solve on a daily basis

H .
I I I I I Massachusetts Institute of Technology Pag e 48



Field Experiment

Goal: to identify whether or not raising prices would decrease
sales

Set lower bound on price = legacy price (cost + markup)
— Model only recommends price increases (or no change)

|dentified ~6,000 styles where tool recommended price
Increases

Overall impact = 10% increase in revenue

-> Much larger profit margin impact

H .
I I I I I Massachusetts Institute of Technology Page 49



Dynamic Pricing

« What if you can change a style’s price throughout the event?
} — Possible price set, p,

{$24.90, $29.90, $34.90, $39.90
d, d, d, d, < meandemand, d,
(purchase probability)

 Given unlimited inventory and known demand, select price
with highest revenue = p;*d.

» Challenges

1. Unknown demand
2. Limited inventory
3. Finite selling season

H .
I I I Il  Massachusetts Institute of Technology Page 50



Exploration vs. Exploitation Tradeoff

Test multiple prices

to estimate demand

Learning

Offer price estimated from
data to maximize revenue

H .
I I I Il  Massachusetts Institute of Technology Page 51




Demand Hypotheses

« m demand function

hypotheses:
{§011 P2, ) gDm}
(pi:P — [0,1]

« If hypothesis i holds,
customer buys with

probability ¢;(p)

« The retailer does not
know the true
hypothesis

®;(p) ‘

»

P1 Plz

Fig: An example with 3 hypotheses

.B‘!f

52



Unlimited Inventory, Finite Selling Season

Suppose there are n customers.

In a fixed price strategy: Regret ~ O(n)

+ Regret = revenue of an oracle who knows the true
hypothesis — revenue of the retailer

If the retailer can change price once, the regret

~ 0(log n)
In general, if the retailer can change price k times,
the regret ~ O(log log...log n)

.—
k times

Best possible heuristic—a matching lower bound
Hence, Regret(n) = O(log...logn)

53



-
S and

P

>

Limited Inventory, Finite Selling Season

-
o

v
Y
.

TASALY
A

LRCey

B i, A
2o e
PR

oy
AR A A
A
AR

"
A
AR

ontinuous exploration & exploitation

earns demand at each price to maximize revenue
odel as Multi-armed bandit problem with inventory

hompson Sampling plus Linear Optimization

TASALY

SLRCey

H .
Il  Massachusetts Institute of Technology Page 54




Theoretical Results

 Using the modified algorithm, we have

Regret(T) < O(/Tlog?T),

- Matches lower bound Q(T)

H .
I I I Il  Massachusetts Institute of Technology Page 55



Algorithm Performance: Simulations

Algorithm Performance

$6,000

$5,000

$4,000 //ﬁw —+—Upper Bound
$3,000

/ —+—Proposed
$2,000 Algorithm
/./. —-Worst Case
31,000 /. (Single Price)

0 50 100 150 200
Starting Inventory

Revenue

price =[29.9,39.9]; demand =[0.008,0.002]; time = 20k; # simulations =

;= 1,000
I I Il  Massachusetts Institute of Technology Page 56
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Two Types of Data Driven Research

. Type I: Focus on a specific goal

+ Examples: Increase Revenue; Decrease Cost; Reduce the
spread of an epidemic

+ Challenge: Let the data identify the specific issues,
opportunities and models

+ Impact: Data Driven Models

« Type ll: Open-ended search for correlations and
relationships without any clear goal in mind

+ Typically the objective of data mining: Uncover economic
or other relationships by analyzing huge data sets

58



Data Driven Models (DDM)

« Two Examples: ATM Model; Online Retailing

DDM is linked with Decision Making
+ Fits with our unique set of skills and tools

Allows to distinguish our profession from economics
and statistics
+ Apply data mining and focus on Type Il

It can be different than “empirical research”

The early history of OR focused on DDM

+ Methods of Operations Research by Philip M. Morse and
George E. Kimball, published in 1951

59



Example (Philip M. Morse and George E. Kimball, 1951)

« Mail order delivery, selling to low-income rural
families using COD (Cash on Delivery) agreement

+ Many customers refuse product upon arrival
« Statistical analysis showed high correlation between

COD refusal and the time original order was made by
the family and delivery time by the mailman

+ |If item does not arrive at a certain time, money spent
elsewhere and COD item was refused

« Solution: Limit market area covered by the delivery
service-- Network Design model

+ Impact: “considerable reduction in lost sales”

60



The Future of OM Research

« Emphasize data driven in research and teaching

+ Today, there is too little reliance on data in formulating
models and identifying research opportunities

+ Systems involving people can be difficult to analyze unless
you have data about behavior

« Develop new engineering and scientific methods
that explain, predict and change behavior

« Need to develop an open source data repository

+ Example: MIT wide competition with data from a public
organization

61
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