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Algorithms and Probability 

• Karp, R. M. (1977), Probabilistic Analysis of 
Partitioning Algorithms for the Traveling Salesman 
Problem. Math. Oper. Res. 
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Asymptotically 

optimal heuristics 



Algorithms and Probability 

• Haimovich, M. and A. H. G. Rinnooy Kan (1985), 
Bounds and Heuristics for Capacitated Routing 
Problems. Math. Oper. Res. 

 Key Assumption: Equal Customer Demand

• The Challenge: Identify asymptotically optimal 
algorithms for general vehicle routing problems

 Unequal customer demand

 Time window constraints
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General Vehicle Routing Problems
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• Bramel and Simchi-Levi (1996), Probabilistic Analysis and 
Practical Algorithms for the Vehicle Routing Problem with 
Time Windows. Operations Research

• Cost is dominated by redial distance and optimal packing of 
customers. 

• Leads to modeling routing 
problems as “Capacitated 
Location Problems.”

• Asymptotically optimal 
heuristic 



Weaknesses and Strengths

• Two very strong assumptions

 Large size problems

 Independent customer behavior

• Provides insight into the structure of efficient 
algorithms: 

 Cost and Service 

 Computational time

9



NYC--School Bus Routing System
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• Computerized System for School

Bus Routing

• Combine Large Database, 

Visualization and Analytics

• First Place Prize in Windows 

World Open Competition, 1994

• 1500 buses

• $100K per bus and driver per year

• The “Manhattan Project”

• 30-40% savings



Confidential

LogicTools, Inc. – Corporate Overview

 Industry Leading Company

 Founded in 1996 by David Simchi-Levi, professor at MIT and 
Edith Simchi-Levi

 The market leader in supply chain planning systems that integrate 
state-of-the-art optimization technology and easy-to-use 
interfaces

 HQ in Chicago, IL

• Offices: Boston MA, Eugene OR and Munich Germany

 Over 350 companies (70+ Fortune 500) in many different 
industries use and benefit from our solutions

 LogicTools is an SAP Software Partner since 2004 
 SAP recognizes LogicTools’ thought leadership in supply chain 

planning

 Peak Performance Initiative with Microsoft

 Acquired in April 2007
 Now part of IBM Business Analytics Solutions

 LogicTools technology is “used by over 50% of the world’s largest 
supply chains,” according to IBM.
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The Pepsi Bottling Company (A Division of PepsiCo) 

Operates 57 
Plants in the U.S. 
and 103 Plants 
Worldwide

7 Business units 
in the U.S. each 
responsible for 
local demand

240,000 Miles are 
Logged Every Day to 
Meet the Needs of 
Our Customers

Strong Customer 
Service Culture 

Make Sell Deliver Service

The Challenge (Beginning of 2006): 

• Shifting consumer preference 

•From carbonated to non-carbonated drinks 

•From cans to bottles 

• Produced these products in limited plants

• Service problems during periods of peak demand
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Process Flexibility 

• Balance transportation and manufacturing costs

• Match supply with demand

• Better utilize resources 
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Chaining Strategy (Jordan & Graves 1995)

• Focus: maximize the amount of demand satisfied

• Simulation study
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Applications to different settings:

[Sheikhzadeh et al. 1998], [Graves & Tomlin 2003], [Hopp et al. 2004], 

[Gurumurthi & Benjaafar 2004], [Bish et al. 2005], [Iravani et al. 2005], 

[Wallace & Whitt 2005], [Chou et al. 2010a]



PepsiCo’s Press Release, 2008—The Impact

• Creation of regular meetings bringing together Supply chain, 

Transport, Finance, Sales and Manufacturing  functions to discuss 

sourcing and pre-build strategies

• Reduction in raw material and supplies inventory from $201 to $195 

million

• A 2 percentage point decline in in growth of transport miles even as 

revenue grew

• An additional 12.3 million cases available to be sold due to 

reduction in warehouse out-of-stock levels 

To put the last result in perspective, the reduction in warehouse out-of-stock levels

effectively added one and a half production lines worth of capacity to the firm’s

supply chain without any capital expenditure.
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Motivating Example

Fixed plant capacity: 10000

IID Normal product demand: 
mean = 10000
stdev = 3300
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6 6

Plant Product

Expected Sales≈ 52034

No Flexibility



Adding Flexibilities
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Expected Sales ≈ 56757
Improvement ≈ 9.08%
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Increasing Incremental Benefit
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Flexibility Structures
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Long Chain Full Flexibility

• Assumptions : # plants =# products; plant capacity is 1
• Notations: For a demand realization d, we use P(d, A) to denote 

the sales of flexibility structure A
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Supermodularity

Theorem 1 (Supermodularity of Long Chain)

Given a fixed demand instance d, for any α and g that are 
flexible arcs in Cn, and any flexibility structure A  Cn,

P(d, A∪{α, g}) - P(d, A∪{g}) ≥ P(d, A ∪{α}) - P(d, A).

1 1

2 2

3 3

4 4

Cn

flexible arcs



Supermodularity

Theorem 1 (Supermodularity of Long Chain)

Given a fixed demand instance d, for any α and g that are 
flexible arcs in Cn, and any flexibility structure A  Cn,

P(d, A∪{α, g}) - P(d, A∪{g}) ≥ P(d, A ∪{α}) - P(d, A).

• P(d, A ∪{α}) - P(d, A)

• increase in sales when we add α to A.

• P(d, A∪{α, g}) - P(d, A∪{g}): 

• increase in sales when we add α to A∪{g}.



Supermodularity

Theorem 1 (Supermodularity of Long Chain)

Given a fixed demand instance d, for any α and g that are 
flexible arcs in Cn, and any flexibility structure A  Cn,

P(d, A∪{α, g}) - P(d, A∪{g}) ≥ P(d, A ∪{α}) - P(d, A).

Application of [Gale and Politof 1981].

Corollary 1 (Increasing in Marginal Benefits)

The marginal benefits as the long chain is constructed is 
always increasing.

Observed by papers such as [Hopp et al. 2004] & [Graves 2008]



Decompose the Sales of the Long Chain

Theorem 2 (Decomposition of Long Chain)
Given a demand instance d, 

P 𝐝, Cn = 

i=1

n

(P 𝐝, Cn− {αi} − P 𝐝, Cn− {αi, αi−1, βi} )

where αi=(i,i+1) for i=1,…,n-1, α0= αn=(n,1) and βi=(i,i) for 
i=1,…,n. 

1 1

2 2

3 3

4 4

P(d, C4− {α1}) P(d, C4− {α1, α0, β1})

1 1

2 2

3 3

4 4

Example (n=4, i=1):



Illustrating the Decomposition
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Key Idea of the Proof
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Under IID Demand
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Under IID demand,

= =

3X

E[P(D, L3)] E[P(D, L2)] 

E[P(D, C3)] 

Proposition 1 (Expected Performance of Long Chain)
For IID demand, E[P(D, Cn)]/n = E[P(D, Ln)– P(D, Ln-1)].

= =
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Impact



Impact (Cont.)

Supply chain resiliency with process flexibility and inventory: 

 Implementation at Ford –Recently Awarded the INFORMS 
Daniel H. Wagner Prize for Excellence in Operations Research 
Practice
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Data Driven Research--The Opportunity

• Extensive use of data to identify models that drive 
decisions and actions

 Spans Statistics, Computational  Science and Operations 
Research techniques 

37

The Queue Inference Engine: Deducing Queue Statistics from Transactional 
Data. Richard C. Larson Management Science, (1990) Vol. 36, pp. 586-601 

Given customers transaction times, can you

Infer the number of customers waiting to use 

the machine?



Online Retailing: Online Fashion 

Sample Sales Industry
• Offers extremely limited-time discounts (“flash sales”) on 

designer apparel & accessories

• Emerged in mid-2000s and has had nearly 50% annual 

growth in last 5 years
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Snapshot of Rue La La’s Website



“Style”
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“SKU”
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Flash Sales Operations

Merchants 

purchase items 

from designers

Designers 

ship items to 

warehouse*

Merchants decide 

when to sell items 

(create “event”)

During event, 

customers 

purchase items

Sell out 

of item?

End

*Sometimes designer will hold inventory

Yes

No

First event that style is 

sold = “1st exposure”



*Data disguised to protect confidentiality
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Sell-Through Distribution 

of New Products
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suggests price 

may be too low

suggests price 

may be too high
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Approach

Goal: Maximize expected revenue from 1st exposure styles

Demand Forecasting

Challenges:

 Predicting demand for 

items that have never 

been sold before

 Estimating lost sales

Techniques:

 Clustering

 Machine learning models 

for regression

Price Optimization

Challenges:

 Structure of demand forecast

 Demand of each style is 

dependent on price of 

competing styles 

exponential # variables

Techniques:

 Novel reformulation of price 

optimization problem

 Creation of efficient algorithm 

to solve daily
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Forecasting Model: 

Explanatory Variables Included

• Tested several machine learning techniques

– Regression trees performed best



Regression Tree – Illustration
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Demand 

prediction

If condition is true, move left; 

otherwise, move right
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exponential # variables

Techniques:

 Novel reformulation of price 

optimization problem
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Price Optimization Complexity

• Three features used to predict demand are associated with pricing

– Price

– % Discount = 

– Relative Price of Competing Styles =

• Pricing must be optimized concurrently for all competing styles

– Would be impractical to calculate revenue for all potential 

combinations of prices

• We developed an efficient algorithm to solve on a daily basis
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Field Experiment

• Goal: to identify whether or not raising prices would decrease 

sales

• Set lower bound on price = legacy price (cost + markup)

– Model only recommends price increases (or no change)

• Identified ~6,000 styles where tool recommended price 

increases

• Overall impact = 10% increase in revenue

 Much larger profit margin impact

Page 49



Dynamic Pricing

• What if you can change a style’s price throughout the event?

• Given unlimited inventory and known demand, select price 

with highest revenue = pi*di

• Challenges

1. Unknown demand

2. Limited inventory

3. Finite selling season

Page 50

{$24.90, $29.90, $34.90, $39.90}

d1 d2 d3 d4

possible price set, pi

mean demand, di

(purchase probability)



Exploration vs. Exploitation Tradeoff

Page 51

Learning

Earning

Test multiple prices 

to estimate demand

Offer price estimated from 

data to maximize revenue



Demand Hypotheses

• 𝑚 demand function 
hypotheses:
{𝜑1, 𝜑2, … , 𝜑𝑚}

𝜑𝑖: 𝑃 → [0,1]

• If hypothesis 𝑖 holds,
customer buys with 
probability 𝜑𝑖(𝑝)

• The retailer does not 
know the true 
hypothesis

52

φi (p)

Fig: An example with 3 hypotheses



Unlimited Inventory, Finite Selling Season 

• Suppose there are 𝒏 customers. 

• In a fixed price strategy: Regret

 Regret = revenue of an oracle who knows the true 
hypothesis – revenue of the retailer

• If the retailer can change price once, the regret 

• In general, if the retailer can change price k times, 
the regret

• Best possible heuristic—a matching lower bound

• Hence, Regret 𝒏 = Θ(log… log 𝒏)

53

~ 𝑶(𝒏)

~ 𝐎(𝒍𝒐𝒈 𝒏)

~ 𝑶(𝒍𝒐𝒈 𝒍𝒐𝒈. . . 𝒍𝒐𝒈 𝒏)

k times



Limited Inventory, Finite Selling Season

• Continuous exploration & exploitation

• Learns demand at each price to maximize revenue

• Model as Multi-armed bandit problem with inventory

• Thompson Sampling plus Linear Optimization
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Theoretical Results

• Using the modified algorithm, we have 

𝑅𝑒𝑔𝑟𝑒𝑡 𝑇 ≤ 𝑂( 𝑇 log2 𝑇),

• Matches lower bound Ω( 𝑇)
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Algorithm Performance: Simulations

Page 56

price = [29.9,39.9]; demand = [0.008,0.002]; time = 20k; # simulations = 

1,000
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Two Types of Data Driven Research 

• Type I: Focus on a specific goal

 Examples: Increase Revenue; Decrease Cost; Reduce the 
spread of an epidemic

 Challenge: Let the data identify the specific issues, 
opportunities and models

 Impact: Data Driven Models

• Type II: Open-ended search for correlations and 
relationships without any clear goal in mind

 Typically the objective of data mining: Uncover economic 
or other relationships by analyzing huge data sets    
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Data Driven Models (DDM)

• Two Examples: ATM Model; Online Retailing

• DDM is linked with Decision Making

 Fits with our unique set of skills and tools 

• Allows to distinguish our profession from economics 
and statistics

 Apply data mining and focus on Type II

• It can be different than “empirical research”

• The early history of OR focused on DDM

 Methods of Operations Research by Philip M. Morse and 
George E. Kimball, published in 1951
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Example (Philip M. Morse and George E. Kimball, 1951)

• Mail order delivery, selling to low-income rural 
families using COD (Cash on Delivery) agreement

 Many customers refuse product upon arrival

• Statistical analysis showed high correlation between 
COD refusal and the time original order was made by 
the family and delivery time by the mailman

 If item does not arrive at a certain time, money spent 
elsewhere and COD item was refused

• Solution: Limit market area covered  by the delivery 
service-- Network Design model

 Impact: “considerable reduction in lost sales”
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The Future of OM Research 

• Emphasize data driven in research and teaching 

 Today, there is too little reliance on data in formulating 
models and identifying research opportunities

 Systems involving people can be difficult to analyze unless 
you have data about behavior

• Develop new engineering and scientific methods  
that explain, predict and change behavior

• Need to develop an open source data repository

 Example: MIT wide competition with data from a public 
organization
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